Bandweaver’s Linear Heat Detection (LHD) System Turin Metro Monitoring

by Louise Seager

Since commencing operations in 2006, the Turin Metro has established itself as Italy’s pioneering fully automated metro system and a benchmark for state-of-the-art urban mobility. It delivers driverless service, short headways, and energy-optimised performance with a fleet of Siemens-delivered VAL 208 trains designed to carry a maximum of 440 passengers. The trains operate at a top speed of 80 km/h on a 750 V DC supply and employ rubber wheels to achieve high acceleration with minimal vibration, with each wheel equipped with traction and electrical braking systems.

In underground metro systems, trains constitute a significant fire risk due to thermal stresses in braking systems during deceleration, mechanical wear from frequent stop-start operations, and the presence of high-voltage traction power supplies. These hazards are particularly relevant for Siemens VAL 208 trains, which employ IGBT-based traction converters and brushless DC motors. While these technologies deliver high efficiency and reliable performance, their high voltage switching and associated thermal loads under heavy operating conditions increase the potential for fire incidents, requiring careful monitoring.

Traditional point-based smoke or heat detectors in metro stations are not suitable for this type of fire monitoring, as they cannot provide complete coverage near the tracks, where fire risks are elevated due to braking systems, traction equipment, and frequent train movements. In late 2024, the Turin Metro end user identified the need to replace legacy third-party LHD systems that had been in service for over a decade. The project scope included evaluating alternative LHD solutions, reviewing system specifications, and deploying a reliable replacement to ensure continuous fire monitoring and uninterrupted operational continuity.

Read the full case study here.

Bandweaver’s Linear Heat Detection (LHD) System Photovoltaic (PV) Array Monitoring

by Louise Seager

In the past decade, solar energy has gained significant prominence worldwide as an emission-free and sustainable energy source. It has progressively become both economically viable and reliable. Nevertheless, faults in photovoltaic (PV) panels – such as faulty wiring, connector failures, combiner box malfunctions, and plugs prone to overheating or ignition – pose substantial fire risks to industrial facilities and commercial properties.

During 2023, an established technical solutions integrator sought a state-of-the-art fire detection and monitoring system to safeguard a high-value operational facility in the Netherlands. The principal goal was to reduce fire-related threats originating from rooftop solar PV modules, which posed a risk of undetected fire propagation potentially jeopardising the facility’s critical operations.

The end user required an advanced fire detection system capable of comprehensive monitoring across all areas susceptible to electrical overheating associated with the rooftop solar PV infrastructure. The system needed to accommodate the dispersed layout of the PV components distributed across the open rooftop surface. Due to this complex and spatially distributed configuration, conventional fire detection methods, such as point-type sensors, were deemed unsuitable.

SenseTek B.V., Bandweaver’s authorised distributor in the Netherlands, possessed prior collaboration experience with the technical solutions integrator and was engaged for this project. The proposed technical solution was required to demonstrate the capability to detect overheating behind PV cable wiring before receiving approval. SenseTek B.V. thoroughly analysed the end-user’s fire detection requirements and supplied Bandweaver’s fiber optic-based Linear Heat Detection (LHD) system, the FireLaser DTS.

Read the full case study here.

Linear Heat Detection (LHD) System Lithium-ion Battery Warehouse Monitoring

by Louise Seager

As demand for lithium-ion batteries grows, third-party logistics (3PL) providers face mounting pressure to store them safely. These volatile products present serious fire risks, especially in conventional warehouses where infrastructure isn’t designed to contain thermal runaway events.

In this case study, a leading 3PL in the Netherlands needed a solution to protect a dedicated lithium-ion storage zone within a large-scale warehouse. With new national fire safety regulations in place, the operator required precise, real-time heat detection across multi-level racking.

Bandweaver’s fiber optic linear heat detection system was chosen to deliver early warning, rapid spike detection, and targeted zone alerts, all without in-rack electronics. The result was a reliable, regulation-ready detection system for one of the industry’s most high-risk storage challenges.

Click here to read the full case study.

Enhancing safety: Advanced Linear Heat Detection System for Asian Battery Storage Facility

by WebbedFeet

A leading distributor of electrical components, including lithium-ion batteries, faces unique safety challenges. While lithium-ion batteries are generally safe, they can emit toxic fumes if they catch fire. In the event of thermal runaway, a rapid and uncontrollable reaction can cause the fire to spread quickly, leading to a chain reaction that is difficult to contain. Unlike conventional fires, extinguishing a lithium-ion battery fire may require up to five times more water, making it a particularly complex hazard to manage.

The client required a state-of-the-art fire detection system to ensure safety in their facility, which stores lithium-ion batteries in multi-story bays within high, three-dimensional warehouses. With 400 bays in total, these enclosed spaces pose challenges for conventional fire detection technologies like beam detectors, video flame detection, and aspirating systems. Initially, the client considered installing low-cost smoke detectors in each bay, but they also sought a solution capable of detecting heat rise before thermal runaway occurs and before smoke is emitted, ensuring early intervention and minimising the risk of a fast-spreading fire.

Click here to read the full case study.

Bandweaver installs Linear Heat Detection (LHD) solution for conveyor belts at cement production facility

by Sarah Phillips

The prominent cement plant is owned by a globally recognised leader in the building materials industry. It is vital to maintain high standards of fire safety and after a number of incidents over recent years, it was decided a more preventative approach was necessary. As a result of these incidents, the insurance assessment indicated that the conveyor belts were a particular hazard and were upgraded from low risk to high risk.

Read more

Yeniköy Kemerköy Conveyor Belt

by Sarah Phillips

The Scenario

Yeniköy is a 420 Megawatt MW coal-fired power station in Yeniköy, Muğla, Turkey and is owned by Limak- IC İçtaş. The site first became operational in 1986 with a current annual nominal production capacity of 2,730,000,000 KWh.

Yeniköy thermal plant and neighbouring and Kemerköy power station are classified as critical power infrastructure. Both, plants involve the transport and processing of a highly flammable product – domestic lignite. With more than 20km of belts to be monitored, advanced detection and visualisation was required to effectively protect the site.

Every year, 10 million tonnes of coal are transported through the on-site conveyor belt system, making it a critical component in the operation of the power station.

Client Requirements

The Yeniköy Kemerköy conveyor belt is a key part of the value chain to the client’s business. This plant must be able to operate over long periods of time with minimum disruption to production demands.

A solution was required to ensure the effective management of temperature events within this critical area, for detecting local overheating of equipment and providing early fire detection capability, within the client’s allocated budget.

The solution had to be cost effective in terms of cost of ownership, throughout the retrofit installation and including lifetime support costs.

The required solution needed to ensure that the client could possess and own the optimal solution in terms of reducing risk and minimizing ongoing maintenance costs.

What Did We Do?

The end user initially trialled thermal cameras on the site, however the performance was not satisfactory and did not adequately fulfil the requirements. BTS Yangın worked with the customer to design a fiber optic Linear Heat Detection (LHD) system based on Bandweaver’s FireLaser DTS system. After demonstrations from two fiber optic linear heat detection providers, the project was awarded to BTS Yangın, utilising Bandweaver’s FireLaser distributed temperature sensing solution.

A single 4 channel / 10km FireLaser unit was installed, offering the end user up to 40km of monitoring capability. For this particular application, 714 zones were configured, measuring 30m in length per zone over a total of 21.4km.

The FireLaser’s smart alarms were configured to detect maximum temperatures of 57-61.5°C, as well as a rate of rise of rise 5°-7°C. Using both variables, the system ensured that operators would be alerted should the system overheat in a range of conditions.

To provide a complete overview of the site’s operation, FireLaser was integrated with Panasonic CCTV via FireLaser’s built-in relay outputs. Bandweaver’s MaxView software platform was also used for advanced visualisation of the site and the fiber optic sensing system.

Detection of hot roller

For conveyor belts one of the key maintenance issues is the issue of roller failure and subsequent heating. When the bearing in a roller fails, typically resulting in high levels of friction which will cause the bearing to become very hot and lead to fires. As well as fire detection, the FireLaser linear heat detection system was also able to detect heating in rollers along the conveyor, prior to an ignition event.

In the event of an alarm, technical staff on site can be alerted by the operator in the control room to check the sensing cable with a thermal camera within the zone that is in a state of alarm. The heated cylinder can thus be detected within any 30-metre zone in a very short time. By using the professional thermal camera, the temperature can be understood almost precisely, and appropriate action taken.

Before the FireLaser DTS system was installed, there were even rollers that had become embers. However, with this early detection system, mechanical problems can be detected quickly after the early alarm detection, and heating effects minimised. Once the conveyor is stopped, the roller can be replaced and the conveyor normal operating mode in a short time.

Benefits To the Client

The Bandweaver system complied with the operator’s high specification requirements. Some of the key following benefits and advantages to the end user include:

  • Early detection of even a small fire: Bandweaver LHD systems are approved to operate with a measurement time of 5 seconds which is considerably quicker than the alternatives. With the smart alarms (including rate of rise and deviation alarms), the system can detect fires at a very early level without risk of false alarms.
  • Complete Coverage: The distributed nature of the fiber optic system provides measurements every 1m along the length of the cable providing complete and continuous coverage with no blind spots or gaps in the protection.
  • Low Cost of Ownership: Fiber optic cables are completely passive and have no moving parts, they are non-corrosive and immune to electromagnetic interference and typically have lifetimes of more than 30 years and so carry a very low cost of ownership and no maintenance.

Bandweaver Technology outperforms all competition with FireLaser Linear Heat Detection (LHD) to provide superior fire protection at car parking facility in Amsterdam

by Sarah Phillips

Together with SenseTek, Bandweaver Technology’s flagship Linear Heat Detection (LHD) solution, FireLaser, offers over 7,000m of coverage at Parking Garage P10 Plaza Arena in Amsterdam. With the capability to detect a pan fire test of just 0.25m2, the system successfully meets some of the most stringent fire regulations in the world. SenseTek, a specialist in fire detection applications, worked with the client to design a solution that meets and surpasses these requirements.

Read more

South African Mine Conveyorbelt Project – New Contract Win

by Sarah Phillips

HMA Group in South Africa recently won a project to deploy 3 FireLaser DTS to monitor several conveyor belts in a mine, these will be utilised for early detection of fire and ensure a rapid response to any alert. The DTS controllers will also be connected to the Bandweaver MaxView integrated software platform which will provide operators of the exact location of any potential fire.
Read more

Overhead Power Line Monitoring – New Contract

by Sarah Phillips

Bandweaver are pleased to have been awarded a major contract for overhead power line monitoring utilising our advanced DAS solution. This is another major win for Bandweaver following an extended competitive tendering process which will see multiple Horizon DAS units deployed to protect several hundred kilometres of power lines. Read more